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Abstract

This paper analyzes the nature of technology shocks and documents important

changes in their propagation over time. We employ a vector-autoregression and identify

a shock that explains the maximum variation in total factor productivity (TFP) at

a long finite horizon. This agnostic identification suggests that the dominant shock

driving TFP is not necessarily a surprise shock, but exhibits features consistent with

a shock that is anticipated or diffuses over time: GDP and consumption rise prior to

any significant increase in TFP. We further find that shock transmission has changed

over time. In a sample that ends in the mid 1980s, the shock triggers a decline in

hours-worked and inventories, and a rise in credit spreads. In a post-Great Inflation

sample the response of these variables is reversed and the shock generates an outright

expansion in hours, inventories, GDP and consumption that is accompanied by a decline

in credit spreads. We find that the importance of technology shocks as a major driver

of aggregate fluctuations has increased over time — they play a dominant role in the

second subsample, but much less so in the first.
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1 Introduction

Since at least the onset of the era of modern macroeconomics, the idea of stochastic

shifts in the technological frontier of the economy as driver of business cycles has had a

very prominent role in macroeconomics. These so-called “technology shocks” have remained

controversial since their inception, and in tandem with work studying their role in theoretical

models, empirical researchers have sought out evidence about their potential prominence

and role in the data. Do shifts in technology trigger a response that resembles business

cycles? If so, how important are such disturbances for explaining aggregate fluctuations?

Does it matter if these technological shifts are surprise shocks or anticipated in advance?

Not surprisingly, the empirical literature addressing these questions has at times arrived at

dramatically different answers.

While much of the literature has focused on exploring implications of different time-series

treatments and identifications, in this paper we take a step back and explore the role of

technological era. Using a standard VAR-based Max Share technology shock identification,

we show that analyzing two separate subsamples created by splitting the data around the

generally considered onset of the Great Moderation yields dramatically different results, and

these results are remarkably robust to identification method and data treatment. We can

characterize the general results over these two subsamples as follows: (i) the most relevant

shock driving TFP is not necessarily a surprise shock as assumed in many models, but rather

a news/diffusion shock; (ii) the importance of technology shocks has increased over time,

and, (iii) the importance of technology shocks in terms of business cycles has increased over

time.

With respect to our first general result above, following Kurmann and Sims (2021),

our Max Share empirical shock identification seeks out the shock that “best explains” the

variance in TFP at some long but finite horizon, and makes no attempt to impose any sort of

additional short-run restriction in order to separately identify the surprise versus anticipated

(“news”) component of the technology shocks. The identification thus remains agnostic about
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the presence of surprise or news components in technology shocks, allowing us to address

more generally the debate on the nature of technology shocks. Nevertheless, in line with the

results of Kurmann and Sims (2021) over a single sample, in each of our subsamples TFP

only rises with statistical significance after several periods, and then grows gradually beyond

that, consistent with the idea of “anticipated/news” shocks, or technological diffusion. In

this sense we conclude that anticipated/diffused technological growth is the dominant form

of the technological shock over both samples.

With respect to our second general result above, the change in the transmission of tech-

nology shocks is best reflected in the striking difference in the response of hours-worked

across the two subsamples: in the first subsampple hours falls on impact; in the second

subsample it rises. Yet consumption and stock prices rise consistently in both samples.

Moreover, although hours responds differently in both samples, it co-moves positively with

investment, inventories, the real wage and negatively with the BAA spread in both samples.

As a group then, the response of hours, investment, inventories, the real wage and the BAA

spread flips over the two samples relative to the consistent rise in consumption and stock

prices over both subsamples. Interestingly, this connection between hours and inventories in

particular is consistent with the literature that suggests a tight relationship between hours

and inventories (and other variables, e.g. spreads) and argues for these to be assessed in

conjunction.

Finally, with respect to our third general result above, about the increase in importance

of TFP shocks over time, our forecast error variance decompositions show that while the

identified shock explains a large and similar share of TFP over the two subsamples, the

shock explains a substantially larger share of output variations in the second subsample

than the first. This result is also related to our finding that the response of hours and other

key variables in the second subsample, conditional on the identified shocks, is consistent with

the unconditional correlations of those variables in the data. Said another way, the negative

comovement of hours and consumption in the first subsample makes it difficult for the shock

to account for a large proportion of business cycle activity when unconditionally hours and

2



consumption co-move positively.

To attempt to isolate the source of the change in the response over the sub-samples in the

VAR, we perform a counterfactual exercise that “re-recovers” the technology shocks in the

first subsample using the polynomial lag coefficients estimated from the first subsample but

the variance-covariance matrix estimated from the second sample. Similarly, we re-recover

the shocks in the second subsample using the polynomial lag coefficients estimated from

the second subsample but variance-covariance matrix estimated from the first. The results

are striking: the impulse response functions are largely unchaged from our core results,

suggesting that potential structural change in the variance-covariance matrix is not driving

change in the results over the sample. Rather, the exercise points torward changes in the

polynomial lag coefficients of the unerlying VAR.

Our work links to an ongoing literature that focuses on the importance of the long run

to identify technology shocks in VARs. Galí (1999) employs long-run restrictions on labor

productivity to identify technology shocks and finds a decline in hours-worked. Technology

shocks account just for a very small part of total fluctuations in output and hours-worked

at business cycles frequencies which is taken as evidence against the Real Business Cycle

paradigm.1 Others including Christiano et al. (2004) find the opposite result with regards

to the response of hours-worked and the importance of technology shocks for aggregate fluc-

tuations, which was attributed to a differences in the specification of hours in the VAR.2

Following this debate, another strand of the literature emerged which focused on alternative

identification. Francis et al. (2014) propose the so-called, Max Share identification which

identifies a technology shock as the one that that maximizes the forecast-error variance of

labor productivity at some long by finite horizon, and which addresses some of the short-

comings of long-run identification. In particular, Francis et al. (2014) show that the Max

Share identification outperforms standard long-run restrictions by significantly reducing the

bias in the short-run impulse responses and raising their estimation precision. They find —
1See also Shea (1998), Ramey (2005), Pesavento and Rossi (2005) and Basu et al. (2006).
2See also Uhlig (2004) and Dedola and Neri (2007).
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independently of the data specification considered for hours-worked — that hours respond

negatively. Notably, Francis et al. (2014) derive their results from a single sample using

1948Q2-2009Q4.3 We build on the insights of this debate and employ the Max Share iden-

tification but focus on the analysis of two distinct subsamples for which the literature has

documented differences in unconditional time series behavior. While we use TFP instead

of labor productivity for our core analysis, we also show that our split-sample result for

hours-worked holds using labor productivity instead of TFP.

Our work also connects with the ongoing empirical literature that studies anticipated

shocks to technology, typically framed as TFP news shocks. This literature has for several

years debated the response of key economics variables to TFP news, and as with the Galí

(1999) debate discussed above, the response of hours-worked to the identified news shock

has been a key feature of this debate. Some studies, e.g. Kurmann and Sims (2021) and

Barsky and Sims (2011) (both with sample period 1960q1 to 2007q3), find that hours-

worked do not co-move with output and consumption but decline in response to favorable

anticipated technology shocks. Others document a broad-based expansion of macroeconomic

aggregates — see e.g. Görtz et al. (2021) and Görtz et al. (2019) who consider 1984:Q1–

2017:Q1 and 1983Q1-2018Q2 samples, respectively, which closely correspond to the second

subsample in our paper. The differences in findings with regards to the response of hours-

worked is important as it speaks to the notion of whether anticipated technology shocks are

potentially important drivers of aggregate fluctuations. In relation to this, co-movement of

macroeconomic aggregates has also been an important criterion for news-shock models.

We also speak to the large literature that documents differences in time series behavior

across the Great Inflation/Great Moderation samples.4 While this literature documents

the data unconditionally, we point to important changes conditional on technology shocks.

This literature and our work has implications for the estimation of structural models —
3For a further contribution to the methodological debate on shock identification, see also Feve and Guay

(2009) who document a decline in hours-worked over a 1948Q1–2003Q4 sample.
4We cannot do justice here to this extensive literature, see e.g. McCarthy and Zakrajsek (2007), Kahn

et al. (2002) and Sarte et al. (2015).
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in particular in relation to technology shocks. We speak to the relevance of subsample

estimation or estimation with time varying parameters. See e.g. Fuentes-Albero (2019) who

documents that contemporaneous to the Great Moderation there was a widespread increase

in the volatility of financial variables. She comments on changes in the transmission of

financial shocks. Cúrdia and Finocchiaro (2013) show that ignoring regime changes leads to

spurious estimates.

The remainder of the paper proceeds as follows. In Section 2.1 we discuss our empir-

ical methodology and the data. Sections 2.2-2.4 we take a break-date around the Great

Moderation as given and analyze the two separate subsamples using a minimally specified

VAR framework, explore robustness along a number of dimensions and and perform various

empirical exercise to try and isolate and understand the source of this technology change in

the role of technology. Section 3 concludes.

2 A tale of two eras

We begin by providing some VAR-based evidence about the importance of subsample

era to the role and response of the macroeconomy to technology shocks. To make our point

most clearly, we keep our analysis as simple and direct as possible, focusing on a small VAR

with a relatively agnostic identification using two different subsamples. We then discuss the

implications of these results, and provide an initial first-pass analysis of the source of the

changes over subsample era.

2.1 Empirical Methodology and Data

Our identification objective is to isolate broadly-defined technology shocks and we want

to be agnostic about whether technology instantaneously reacts to the shock or with a lag.

Like much of the literature, we focus on a identification condition at a long horizon based

on the idea that a distinguishing feature of a technology shock is its ability to influence the

behaviour of the macro-economy at long-horizons. As such, we identify the technology shock
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using the Max Share methodology as suggested in Francis et al. (2014), who maximize the

forecast error variance share of a productivity measure at a long but finite horizon.5 As

in Francis et al. (2014), we consider this horizon h at which the forecast error variance is

maximised to be 10 years. This approach is consistent with suggestions in Uhlig (2003) and

in the spirit of Angeletos et al. (2020). Following Kurmann and Sims (2021), we use TFP as

the target variable, such that identification isolates the shock that best-explains TFP at a

long horizon. As in Kurmann and Sims (2021), we do not impose any additional restrictions

intended to separate anticipated from surprise shocks to technology (such as a no-impact

orthogonality restriction). As argued by Kurmann and Sims (2021), doing so helps to avoid

measurement issues that may arise with a variable like TFP in the short-run. Moreover, it

also allows us to put the least possible restrictions on our identification, thereby increasing

the scope of our subsample dependence result. As such, the identification allows us to remain

agnostic about the type of technology shock being identified (anticipated vs. surprise), and

does not require us to make the strong assumption that TFP is completely exogenous at all

horizons and comprised of just surprise and news shocks.

We include five variables in our baseline VAR model: TFP, GDP, consumption, hours-

worked and the S&P500. A key measure to identify the shock that moves productivity is

an observable for TFP. We use the TFP measure provided by Fernald (2014) which is based

on the growth accounting methodology in Basu et al. (2006) and corrects for unobserved ca-

pacity utilization. GDP, consumption and hours-worked serve as our measures of economic

activity, and the S&P500 serves as a forward-looking capturing information available to eco-

nomic agents about future macroeconomic developments, helping to avoid non-invertibility

issues. The GDP, consumption and hours-worked are all seasonally adjusted and in real

per-capita terms (except for hours-worked which are not deflated). Appendix C provides

details on the data sources and all used time series. The time series included in the VAR

enter in levels, consistent with the practice in the empirical VAR literature (e.g. Barsky and
5Francis et al. (2014) show that in comparison to other long-run identification schemes, the Max Share

approach’s focus on a long and finite horizon helps reducing small-sample bias in VARs.
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Sims (2011), Francis et al. (2014)). To estimate the VAR we use three lags with a Minnesota

prior and compute confidence bands by drawing from the posterior.6

There is wide agreement in the literature that the structure of the US economy changed

during the 1980s — what we now call the end of the Great Inflation and the onset of the

Great Moderation — which resulted in substantial unconditional changes in time series

behavior. We frame our investigation around the two subsamples on either side of the

onset of the Great Moderation, estimating a VAR on U.S. data separately for each of two

subsamples spanning the periods 1954Q2–1983Q4 and 1984Q1–2019Q4. This subsample

horizon is guided by the literature that documents differences in cross-correlation patterns of

several macro-aggregates in samples before and after the mid-1980s. In particular, McConnell

and Perez-Quiros (2000) and Kim and Nelson (1999) document a structural break at the

first quarter of 1984 (see also e.g. Galí and Gambetti (2009) and Stock and Watson (1999)

for further evidence on this structural break).

2.2 Evidence from Two Eras

Figure 1 shows impulse response functions (IRFs) to our identified technology shock with

the red and blue lines corresponding to the first and second subsamples respectively. There

are several important points to note. First, while our agnostic shock identification does

not exclude the possibility that TFP jumps on impact, in both subsamples, the dominant

effect on TFP is one that grows over time. In particular, in both subsamples TFP only

rises significantly with a lag of eleven quarters and after the other variables in the VAR.

This is consistent with a diffusion-based or anticipated (news) technology shock. Second,

there is a striking difference in the co-movement of the key aggregate variables between the

two subsamples. Whereas in the more recent subsample we see a broad-based and positively

co-moving expansion of GDP, consumption and hours-worked, in the earlier subsample hours-
6Further details about the VAR model, the Max Share identification and prior specifications are provided

in Appendix A.
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worked fall.7 Consumption rises also in the first subsample, yet its short- and medium-run

expansion is less pronounced than that in the second subsample. For GDP this disparity

is even more apparent as output rises in the first subsample significantly only after seven

quarters. Finally, stock prices rise in both subsamples. This rise in stock prices along

with that of consumption over the two subsamples is generally consistent with a “good

news” technological expansion, despite the differential response of hours-worked between the

subsamples. Overall, we observe for almost identical TFP responses a marked difference in

the response of the other variables over the two episodes.8

Figure 1: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

Figure 2 shows the forecast error variance decompositions relating to the estimated VARs

for the two subsamples. While the identified shock explains a substantial and very similar

share of variation in TFP across the two episodes, in the first subsample the shock is of

substantially lower importance for fluctuations in GDP at business cycle frequencies (red

lines, approximately 10-55%) than in the second subsample (blue lines, approximately 70-

85%). The rise in the shock’s importance for business cycle fluctuations in the second

subsample is consistent with the IRF evidence from Figure 1, where we observed a stronger

shock propagation and comovement across all macroeconomic aggregates, including hours-
7The qualitative differences across subsamples with respect to hours-worked is reflected in the labor

market overall. Consistent with the decline in hours during the first subsample, Appendix B documents a
decline in the labor force participation rate and a rise in the unemployment rate. In contrast, for the second
subsample, the labor force participation rate increases and the unemployment rate declines.

8These impulse response functions are robust to using labor productivity as an alternative measure for
productivity. Details are documented in Appendix B. Our results are also robust to alternating the number
of lags and to variations in the Max Share horizon h. Results are available upon request.
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worked. The opposite sign response of hours-worked – relative to GDP and consumption

– is consistent with the notion that the technology shock in the first subsample is of lesser

importance for business cycle fluctuations.

Figure 2: Forecast Error Variance Decomposition — share explained by the TFP
shock. First subsample 1954Q2-1983Q4 (red), second subsample 1984Q1-2019Q4 (blue).
The solid line is the median and the shaded colored areas are the 16% and 84% posterior
bands generated from the posterior distribution of VAR parameters. The units of the vertical
axes are percentage deviations.

In summary, the above results suggest that: (1) The importance of technology shocks has

increased over time — as a major driver of aggregate fluctuations they play a dominant role

in the second subsample but less so in the first; (2) the transmission of technology shocks

has changed over time, especially with regards to the qualitative response of hours-worked;

(3) the most relevant shock driving TFP is not necessarily a surprise shock as assumed in

many models, but rather a news/diffusion shock. We will discuss the implications of these

findings further in the next section which investigates the shock transmission in more detail.

2.3 Digging Deeper: Subsample Differences in Shock Transmission

The above section documents differences in the transmission of TFP shocks over two

subsample eras, most significantly manifested in the response of hours-worked. Developments

in the labor market are often tightly linked to other key margins. In this section, we inspect

these to gain a deeper understanding for differences in the shock transmission across the two

subsamples.

Figure 3 shows responses of multiple variables of interest for the transmission of TFP

shocks. Subplots in this figure are from a VAR with TFP, GDP, consumption, hours-worked,
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the S&P 500 and one of the plotted variables of interest at a time. The plotted response for

hours is from the VAR that includes inventories. The variables not shown are very similar

to those in Figure 1.

In addition to the responses of hours-worked, a number of other variables also display

remarkable differences across the two subsamples in their response to a TFP shock. In

particular, inventories, investment and the real wage fall, and the BAA spread rises in the

first subsample, whereas in the second subsample, the behaviour is reversed. In addition,

there is a short-lived decline in inflation in both subsamples. The patterns of the remaining

two variables are less certain: the federal funds rate doesn’t respond significantly in either

subsample, and capital utilization rises in the second subsample, but is insignificant in the

first.

Figure 3: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations. Subplots are based on a VAR with
TFP, GDP, consumption, hours-worked, the S&P 500 and one of the plotted variables at a
time.

Taking together, the results from Figures 1 to 3 suggest the following with regards to the

behaviour of the key variables in response to the technological shock. First, consumption and

stock prices rise and inflation falls in both subsamples. This rise in consumption and stock

prices in tandem with the delayed rise in TFP is consistent with the idea of “good news”

associated with a rise in lifetime wealth due to expected TFP growth (see e.g. Beaudry and

Portier (2006)). Moreover the short-lived decline in inflation is a widely reported response
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to technology news shocks (see e.g. Barsky and Sims (2011) Kurmann and Sims (2021),

Görtz et al. (2022)). Second, hours-worked, investment, inventories, the real wage and the

BAA spread co-move in a consistent way with each other over both samples – and indeed,

consistent with their unconditional correlations in the data – however, as a group, their

response flips between the two subsamples. In particular, as a group, these variables respond

in the short run in a “contractionary” way in the first subsample, and “expansionary” in the

second subsample. This is also consistent with the somewhat more muted response of output

in the first subsample relative to that in the second subsample, reported in Figure 1.

2.3.1 Group mentality: Labour, inventories, investment and credit spreads

The second observation made in the paragraph above is suggestive of a potential connec-

tion between developments on the labor market, inventories, investment and credit spreads.

The close relationship between hours and inventories has been stressed for example by Mac-

cini and Rossana (1984) and Galeotti et al. (2005), who point out the need for a joint

understanding of the dynamics of inventories and hours-worked. Also Chang et al. (2009)

emphasize this point and document the co-movement of inventories and employment condi-

tional on (unanticipated) technology shocks. They further stress the connection between the

sign of the employment response to technology shocks and the cost of holding inventories.

Their notion that a positive response of hours-worked is more likely the less costly it is to

hold inventories, is consistent with the patterns we document in Figure 3 on inventories,

hours and credit spreads. Risk premia, such as credit spreads, have been recognised in the

literature also as a measure for the opportunity cost of holding inventories. See for example

Jones and Tuzel (2013) who document this relationship between risk premia and inventories

unconditionally and Görtz et al. (2019) who stress the importance of credit spreads as oppor-

tunity cost for inventory holdings conditional on anticipated technology shocks. Hence, the

decline (rise) in inventories shown in Figure 3 for the first (second) subsample is consistent

with a rise (fall) in their opportunity cost captured by credit spreads.

A vast body of research finds that financial markets are characterized by frictions that
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lead to credit spreads and hence affect the financing of investment projects.9 In particular,

Görtz and Tsoukalas (2018) and Görtz et al. (2021) emphasize that the empirical relevance

of technology news shocks hinges crucially on the shock’s transmission being amplified by

frictions in financial markets. The responses of investment and the BAA spread shown in

Figure 3 are consistent with this finding in so far as the response of the BAA spread indicates

a much stronger transmission via financial markets in the second subsample. This and the

relaxation of credit frictions, as indicated by the decline of the BAA spread, is consistent with

the strong expansion in investment we document for the second subsample.10 In contrast, the

somewhat muted rise of credit spreads in the first subsample is indicative of tighter lending

conditions which is consistent with the somewhat less pronounced rise in investment.

Changes in the nature of US business cycles during the mid-1980s are a widely doc-

umented phenomenon. By considering two separate subsamples we take account of this

finding and avoid masking differences in shock transmission across the two subsamples. Es-

timating the VAR over the entire sample (1954Q2-2019Q4) yields responses that are similar

to those of the second subsample. Details are provided in Appendix B.

2.3.2 Conditional Evidence and Unconditional Dynamics in the Data

Our sample split coincides with the end of the Great Inflation and the literature has

documented a number of structural changes in the economy that occurred around this time.

Interestingly, these structural changes would be reflected in some of those variables that we

find to depict the most substantial differences in responses across subsamples, i.e. inven-

tories, hours-worked and credit spreads. McCarthy and Zakrajsek (2007) and Kahn et al.

(2002) document that significant changes in inventory dynamics occur in the mid-1980s due

to improvements in inventory management. Sarte et al. (2015) document that time-series

properties of inventories and hours have changed with the onset of the Great Moderation
9See for example Philippon (2009) and Gilchrist and Zakrajsek (2012).

10Görtz et al. (2021) stress the importance of movements in credit spreads for the propagation of anticipated
technology shocks. They show that such a favorable shock is amplified via financial markets since an
endogenous strengthening of banks’ balance sheets relaxes lending conditions associated with a decline in
credit spreads.
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and attribute this, at least partly, to variations in credit market frictions. Adrian et al.

(2010) and Jermann and Quadrini (2012) argue that the importance of the financial sector

for the determination of credit and asset prices has risen significantly from the mid-1980s.

Further, Jermann and Quadrini (2009) discuss a variety of financial innovations that were

taking place or intensified in the 1980s — including banking liberalization, and flexibility

in debt issuance through the introduction of the Asset Backed Securities market — and

stress their role for a slowdown in output volatility. Fuentes-Albero (2019) documents that

contemporaneous to the onset of the Great Moderation there was a widespread increase in

the volatility of financial variables. This literature studies the unconditional dynamics of

inventories, hours and credit spreads in relation to potential sources for the end of the Great

Inflation. While our paper does not aspire to speak to the reasons for the onset of the Great

Moderation, we note that there might potentially be a link between the sources of struc-

tural change — i.e. improvements in inventory management and developments in financial

markets — that have been attributed to be potential sources of the Great Moderation and

our documented changes in the transmission of technology shocks.11 The following section

builds on our econometric setup to provides some first insights on potential sources of the

subsample differences conditional on technology shocks.

2.4 Exploring the Source of Subsample Differences: Impulse or

Propagation?

Our results above suggest that not only have technology shocks played more of a role

in accounting for aggregate fluctuations over time, but their impact on the macroeconomy

has also changed. While the former effect on its own could simply reflect some change in

a feature of the technology shock itself, the latter result however is more suggestive of a
11Other factors that have been suggested to contribute to the end of the Great Inflation are changes in

monetary policy making and smaller shocks. While this paper does not attempt to speak to this debate
on unconditional changes in time series behavior, it is interesting to note that our results suggest that the
transmission of technology shocks actually resulted in larger, rather than smaller, fluctuations in macroe-
conomic aggregates in response to technology shocks in the second subsample. The insignificant response
of the federal funds rate is indicative for the limited role of changes in monetary policy in context of our
conditional responses to technology shocks.
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change in some underlying feature of the macroeconomy. We now take a first-pass at trying

to understand the reason for this change within the context of our econometric setup.

As we show in detail in Appendix A, our econometric approach considers the following

vector autoregression (VAR), which describes the joint evolution of an n×1 vector of variables

yt:

yt = A(L)ut.

A(L) = I + A1L + ... + ApL
p is a lag polynomial of order p over conformable coefficient

matrices {Ap}pi=1. ut is an error term with n × n covariance matrix Σ. We assume a linear

mapping between the reduced form errors ut and the structural errors εt:

ut = B0εt,

where B0 is an identification matrix. We can then write the structural moving average

representation of the VAR:

yt = C(L)εt,

where C(L) = A(L)B0, εt = B−10 ut, and the matrix B0 satisfies B0B
′
0 = Σ. B0 can also

be written as B0 = B̃0D, where B̃0 is any arbitrary orthogonalization of Σ and D is an

orthonormal matrix such that DD′ = I.

Thus through the lens of our structural moving-average representation in equation (3),

the subsample differences can be driven by: (i) differences in the polynomial lag matrix

C(L), (ii) differences in the variance-covariance matrix associated with εt, which in turn

results from differences in the estimates in the variance-covariance matrix Σ. We test for

this as follows: We draw from the posterior coefficient matrix based on the reduced form

VAR estimated for each of the two subsamples (we use the same seed for the random number

generator). We then identify the TFP shock for the first subsample (as outlined in Section

2.1 and Appendix A.1) using the second-subsample polynomial-lag coefficients and the first-

subsample variance-covariance matrix. Similarly, we identify a TFP shock for the second
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subsample, using the first-subsample polynomial-lag coefficents and the second-subsample

variance-covariance matrix.

Figure 4 shows the results of this exercise. The red shaded areas shown in the first row

are the IRFs based on the first subsample. The blue shaded areas in the second row are the

IRFs based on the second subsample. These shaded areas are congruent with those shown

in Figure 1 and are used as a point of reference. The blue dashed and dotted lines in the

first row show the median and posterior bands if the shock is identified using first-subsample

polynomial-lag coefficients and second-subsample variance co-variance matrix. Similarly, the

red lines in the second row of Figure 4 show the responses if the shock is identified using the

second-subsample polynomial-lag coefficients and the first-subsample variance co-variance

matrix. It is striking from the first row that if we identify the shock using polynomial-lag

coefficients that are consistent with the first subsample and a second-subsample variance

co-variance matrix, the resulting IRFs are extremely similar to the original first subsample

responses. The same holds vice versa for the second row. This implies that the documented

differences across subsamples are driven to a large extent by differences in the polynomial-lag

coefficients, rather than differences in the variance co-variance matrices. This is indicative

of a role for differences in the shock’s transmission through the economy across the two

subsamples.

3 Conclusion

While not as far-reaching as once advocated in the 1980s, technology shocks continue

to play an important role in our understanding of aggregate fluctuations. Dis-satisfaction

with the idea and plausibility of unexpected high-frequency technology shocks – especially

negative shocks – lead researchers in the early 2000’s to study whether technology could still

play a role in the absence of surprise shocks and technological regress. Beaudry and Portier

(2006) showed how a business cycle boom-bust could result in such an environment when

the driving impulse was changes in expectations about future positive shifts in technology
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Figure 4: IRF to TFP shock. First row: subsample 1954Q2-1983Q4 responses (red).
Second row: second subsample 1984Q1-2019Q4 responses (blue). The solid line is the median
and the shaded colored areas are the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The blue (red) dashed and dotted lines in the first
(second) row show the median and 16% and 84% posterior bands if the shock is identified
using the beta coefficients implied by the first (second) subsample and the variance co-
variance matrix implied by the second (first) subsample.

rather than surprise changes in technology itself, and a vibrant literature was launched to

study the importance and role of such “news shocks”.

In this paper we add to the empirical literature attempting to understand the role and

importance of technology shocks. We take an agnostic view of the presence of surprise verss

anticipated shocks, using a well-established empirical identification that seeks to best account

for the variation in TFP at some far out but finite horizon. Rather than using a single sample

as much of the work to date, we split our sample at the onset of the Great Moderation and

study each sample independently. Our results suggest that the qualitative response of TFP

is consistent with a dominant anticipated or diffused shock, that the importance of TFP

shocks has increased over the sub-samples, and that the transmission of the shocks into the

broader economy has changed.

This change in the transmission is manifested most clearly in the response of hours-

worked: hours falls in the first subsample, but rises in the second, despite consumption and

stock prices rising consistently in both subsamples. Moreover, despite its differential response

over the two subsamples, hours co-varies in a consistent way with investment, inventories,
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the real wage, and the credit spread over both subsamples. Studying these puzzles is an im-

portant next step both for understanding technology specifically and aggregate fluctuaitons

more generally.
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Appendix

A Details on the VAR model

This appendix provides details on the VAR model, shock identification and prior speci-

fications.

A.1 VAR-Based Identification of Technology Shocks

We consider the following vector autoregression (VAR), which describes the joint evolu-

tion of an n× 1 vector of variables yt:

yt = A(L)ut.

A(L) = I + A1L + ... + ApL
p is a lag polynomial of order p over conformable coefficient

matrices {Ap}pi=1. ut is an error term with n × n covariance matrix Σ. We assume a linear

mapping between the reduced form errors ut and the structural errors εt:

ut = B0εt,

where B0 is an identification matrix. We can then write the structural moving average

representation of the VAR:

yt = C(L)εt,

where C(L) = A(L)B0, εt = B−10 ut, and the matrix B0 satisfies B0B
′
0 = Σ. B0 can also

be written as B0 = B̃0D, where B̃0 is any arbitrary orthogonalization of Σ and D is an

orthonormal matrix such that DD′ = I.

We identify the technology shock using the Max Share methodology as suggested in

Francis et al. (2014) who maximize the forecast error variance share of a productivity measure

at a long but finite horizon. Following Kurmann and Sims (2021), we use TFP as the measure
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for productivity. The Max Share methodology identifies productivity variations in the long

run. The absence of any short run restrictions makes our applied identification robust to

cyclical measurement issues of technology. Note that the methodology does not make an a

prior assumption on whether technology reacts to the shock only with a lag or not.

Mechanically, we identify the technology shock by finding a rotation of the identification

matrix B̃0, which maximizes the forecast error variance of the TFP series at some finite

horizon. In this, we follow the Max Share approach of Francis et al. (2014). Specifically, the

h-step ahead forecast error is given by:

yt+h − Et−1yt+h =
h∑
τ=0

Aτ B̃0Dεt+h−τ .

The share of the forecast error variance of variable i attributable to shock j at horizon h is

then:

Vi,j (h) =
e′i

(∑h
τ=0Aτ B̃0Deje

′
jD
′B̃′0A

′
τ

)
ei

e′i

(∑h
τ=0AτΣA

′
τ

)
ei

=

∑h
τ=0Ai,τ B̃0γγ

′B̃′0A
′
i,τ∑h

τ=0Ai,τΣA
′
i,τ

,

where ei denotes a selection vector with one in the i-th position and zeros everywhere else.

The ej vector picks out the j-th column of D, denoted by γ. B̃0γ is therefore an n×1 vector

corresponding to the j-th column of a possible orthogonalization and can be interpreted as

an impulse response vector.

The Max Share approach chooses the elements of B̃0 to make this restriction on forecast

error variance share hold as closely as possible. This is equivalent to choosing the impact

matrix so that contributions to V1,2(h) are maximized. Consequently, we choose the second

column of the impact matrix to solve the following optimization problem:12

arg max
γ

V1,2(h) =

∑h
τ=0Ai,τ B̃0γγ

′B̃′0A
′
i,τ∑h

τ=0Ai,τΣA
′
i,τ

, s.t. γγ′ = 1.

We restrict γ to have unit length to be a column vector of an orthonormal rotation matrix
12The optimization problem is written in terms of choosing γ conditional on any arbitrary orthogonalization

B̃0 to guarantee that the resulting identification belongs to the space of possible orthogonalizations of the
reduced form.
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of the Choleski decomposition of the reduced-form variance covariance matrix.

A.2 Specification for the Minnesota Prior in the VAR

We estimate the VAR using a Bayesian approach. The prior for the VAR coefficients A

a standard Minnesota prior as commonly used in the literature. It is of the form

vec (A) ∼ N
(
β, V

)
,

where β is one for variables in the baseline specification which are in log-levels, and zero for

hours. The prior variance V is diagonal with elements,

V i,jj =


a1
p2

for coefficients on own lags
a2σii
p2σjj

for coefficients on lags of variable j 6= i

a3σii for intercepts

where p denotes the number of lags. Here σii is the residual variance from the unrestricted

p-lag univariate autoregression for variable i. The degree of shrinkage depends on the hyper-

parameters a1, a2, a3. We set a3 = 1 and we choose a1, a2 by searching on a grid and selecting

the prior that maximizes the in-sample fit of the VAR, as measured by the Bayesian Infor-

mation Criterion.13

B Additional VAR Evidence

This section provides some additional empirical evidence that corroborates the results

presented in the main body.

Labor Market Responses. Figure 5 shows that the subsample differences in hours-

worked documented in Section 2.2 are also present if we replace total hours-worked with

its components, the labor force participation rate and the unemployment rate. Consistent
13The grid of values we use is: a1 = (1e-4:1e-4:9e-4, 0.001:0.001:0.009, 0.01:0.01:0.1, 0.1:0.1:1), a2 =

(0.01,0.05,0.1,0.5,1,5). We consider all possible pairs of a1 and a2 in the above grids.
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with the decline in hours-worked documented for the first subsample, Figure 5 documents

a decline in the labor force participation rate and a rise in the unemployment rate. For

the second subsample, the rise in hours-worked comes along with a rise in the labor force

participation rate and a decline in the unemployment rate.

Figure 5: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

An Alternative Measure for Technology. Figure 6 shows impulse responses to a

shock that maximizes the share of variance explained in labor productivity as in Francis

et al. (2014). This shows that responses in Figure 1 are robust to using labor productivity

instead of TFP as an alternative measure for productivity. In particular, also when using

this measure for productivity we observe an expansion in GDP, consumption and stock

prices that is more pronounced in the second subsample. Importantly hours work continue

to decline in the first subsample and rise in the second subsample. An important difference

between Figures 1 and 6 is that labor productivity responds strongly in the first subsample.

This is consistent with findings in Francis et al. (2014) and Kurmann and Sims (2021) who

flag this is due to a short-run capital deepening effect: the capital to labor ratio is driven

up by the fall in hours-worked which in turn boosts labor productivity on impact relative to

the more gradual rise in TFP documented in Figure 1.
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Figure 6: IRF to shock that maximizes variation in labor productivity. First
subsample 1954Q2-1983Q4 (red), second subsample 1984Q1-2019Q4 (blue). The solid line is
the median and the shaded colored areas are the 16% and 84% posterior bands generated from
the posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations.

Responses over the Entire Sample. Figure 7 shows the responses to a technology

shock over the whole sample (1954Q2-2019Q4). All macroeconomic aggregates increase

strongly and instantaneously in response to the shock. We also observe a rise in stock prices

and a decline in credit spreads, so that these impulse responses resemble those documented

in Figures 1 and 3 for the second subsample. Particularly the decline in hours-worked and

inventories as well as the rise in credit spreads that we document for the first subsample is

not evident when we estimate a VAR over the entire sample.

Figure 7: IRF to TFP shock. Entire sample 1954Q2-2019Q4 . The solid line is the median
and the shaded areas are the 16% and 84% posterior bands generated from the posterior
distribution of VAR parameters. The units of the vertical axes are percentage deviations.
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C Data Sources and Time Series Construction

This section provides an overview of the data used to construct the observables. All the

data transformations we have made in order to construct the dataset used for estimating the

various VAR specifications and they enter in levels. The majority of the raw data described

below were retrieved from the Federal Reserve of St.Luis FRED database. The exceptions

are the TFP and utilization data series which is from Fernald (2014) at the Federal reserve

bank of San Francisco, and the data on market yield and the BAA spread which are from

the Federal reserve board and Bloomberg.

Data Sources. We describe the exact source of each data series below.

Gross domestic product, current prices: U.S. Bureau of Economic Analysis, Gross Domes-

tic Product [GDP], retrieved from FRED, Federal Reserve Bank of St. Louis; https :

//fred.stlouisfed.org/series/GDP .

Gross Private Domestic Investment, current prices: U.S. Bureau of Economic Analysis,

Gross Private Domestic Investment [GPDI], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/GPDI.

Real Gross Private Domestic Investment: U.S. Bureau of Economic Analysis, Real Gross

Private Domestic Investment [GPDIC1], retrieved from FRED, Federal Reserve Bank of St.

Louis; https : //fred.stlouisfed.org/series/GPDIC1.

Personal Consumption Exp.: Durable Goods, current prices: U.S. Bureau of Economic Anal-

ysis, Personal Consumption Expenditures: Durable Goods [PCEDG], retrieved from FRED,

Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEDG.

Real Personal Consumption Exp.: Durable Goods: U.S. Bureau of Economic Analysis, Real

Personal Consumption Expenditures: Durable Goods [PCEDGC96], retrieved from FRED,

Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEDGC96.

Personal Consumption Expenditures: Services, current prices: U.S. Bureau of Economic

Analysis, Personal Consumption Expenditures: Services [PCES], retrieved from FRED, Fed-
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eral Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCES.

Real Personal Consumption Expenditures: Services: U.S. Bureau of Economic Analysis,

Real Personal Consumption Expenditures: Services [PCESC96], retrieved from FRED, Fed-

eral Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCESC96.

Personal Consumption Exp.: Nondurable Goods, current prices: U.S. Bureau of Economic

Analysis, Personal Consumption Expenditures: Nondurable Goods [PCEND], retrieved from

FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEND.

Real Personal Consumption Exp.: Nondurable Goods: U.S. Bureau of Economic Analysis,

Real Personal Consumption Expenditures: Nondurable Goods [PCENDC96], retrieved from

FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCENDC96.

Real Private Nonfarm Inventories: U.S. Bureau of Economic Analysis [A373RX1Q020SBEA],

retrieved from FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/A373RX1Q020SBEA.

Civilian Noninstitutional Population: U.S. Bureau of Labor Statistics, Population Level

[CNP16OV], retrieved from FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/CNP16OV .

Non-farm Business Sector: Compensation Per Hour: U.S. Bureau of Labor Statistics, Non-

farm Business Sector: Compensation Per Hour [COMPNFB], retrieved from FRED, Federal

Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/COMPNFB.

Non-farm Business Sector: Hours of All Persons: U.S. Bureau of Labor Statistics, Nonfarm

Business Sector: Hours of All Persons [PRS85006031], retrieved from FRED, Federal Re-

serve Bank of St. Louis; https : //fred.stlouisfed.org/series/PRS85006031.

Effective Federal Funds Rate: Board of Governors of the Federal Reserve System (US), Ef-

fective Federal Funds Rate [FEDFUNDS], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/FEDFUNDS.

Implicit GDP deflator: U.S. Bureau of Economic Analysis, Gross Domestic Product: Im-

plicit Price Deflator [A191RI1Q225SBEA], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/A191RI1Q225SBEA.

10 year treasury yield: The market yield on U.S. Treasury securities at 10-year constant

maturity are available from the Federal Reserve Board H.15 database.
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The BAA yield is Moody’s Bond Indices Corporate BAA obtained from Bloomberg.

The real S&P 500 index is obtained from Robert Shiller’s website (http : //www.econ.yale.edu/ shiller/data.htm).

The utilization adjusted TFP data and the series for capacity utilization can be accessed at

www.frbsf.org/economic− research/economists/jfernald/quarterly_tfp.xls.

The raw data are transformed as follows for the analysis. Consumption (in current

prices) is defined as the sum of personal consumption expenditures on services and personal

consumption expenditures on non-durable goods. The times series for real consumption is

constructed as follows. First, we compute the shares of services and non-durable goods in

total (current price) consumption. Then, total real consumption growth is obtained as the

chained weighted (using the nominal shares above) growth rate of real services and growth

rate of real non-durable goods. Using the growth rate of real consumption we construct a

series for real consumption.

Real output is GDP derived by dividing current price GDP with the GDP deflator and

the Civilian Noninstitutional Population measure. Similarly for hours-worked, consumption,

investment and hourly wages (defined as total compensation per hour). All these series, as

well as the real inventory measure are expressed in per capita terms using the series of non-

institutional population, ages 16 and over. The nominal interest rate is the effective federal

funds rate. The BAA spread series is the difference between the BAA yield and the 10 year

treasury yield.
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